

Montville Power LLC Montville Generating Station 74 Lathrop Road Uncasville, CT 06382

January 30, 2017

Permit Coordinator
Bureau of Water Protection and Land Reuse, Remediation Division
Connecticut Department of Energy and Environmental Protection
79 Elm Street
Hartford, Connecticut 06106-5127

Subject: TA-326 – Baseline Monitoring Data Transmittal

Groundwater Injection Pilot Test

Montville Generating Station, Montville Power LLC, Montville, CT

To Permit Coordinator:

In accordance with Section VI.B.3.d of Temporary Authorization No. TA-326 issued on November 9, 2016, Montville Power LLC is submitting this data summary review to the Connecticut Department of Energy and Environmental Protection (CTDEEP) for the subject site. The results are for the baseline groundwater monitoring conducted prior to the groundwater injection Pilot Test.

"I have personally examined and am familiar with the information submitted in this document and all attachments and certify that based on reasonable investigation, including my inquiry of those individuals responsible for obtaining the information, the submitted information is true, accurate and complete to the best of my knowledge and belief, and I understand that any false statement made in this document or its attachments may be punishable as a criminal offense."

Should you have any questions or require further information, please call Mr. Ian Cambridge at (860) 848-6017.

Thank you,

Nick Volturno Plant Manager

Montville Power LLC

cc: Jessica Stefanowicz, CTDEEP (e-copy only)

Juan Perez, USEPA (e-copy only) Robert Spooner, NRG (e-copy only)

lan Cambridge, NRG Montville (hard copy and e-copy)

Andrew D. Walker, LEP, CB&I (e-copy only)

CB&I Environmental and Infrastructure, Inc. 150 Royall Street

> Canton, MA 02021 Tel: +1 617 589 5111 Fax: +1 617 589 5495

Project #: 631207126.11021320

www.CBI.com

January 23, 2017

Permit Coordinator
Bureau of Water Protection and Land Reuse, Remediation Division
Connecticut Department of Energy and Environmental Protection
79 Elm Street
Hartford, Connecticut 06106-5027

Subject: TA-326 – Baseline Monitoring Data Transmittal

Groundwater Injection Pilot Test

Montville Generating Station, Montville, Connecticut

Dear Permit Coordinator:

On behalf of Montville Power LLC (Montville Power) and its parent company, NRG Energy, Inc. (NRG), CB&I Environmental and Infrastructure, Inc. (CB&I) has prepared this data transmittal as required by Section VI.B.3.d of Temporary Authorization (TA)-326 issued by the Connecticut Department of Energy & Environmental Protection (CTDEEP) on November 9, 2016 (CTDEEP, 2016b). This transmittal summarizes the baseline groundwater monitoring conducted prior to initiation of the groundwater injection Pilot Test conducted in accordance with the Groundwater Remedial Action Plan (Groundwater RAP; CB&I, 2016a) and the permit application submitted for TA-326.

Groundwater Sampling

Groundwater monitoring was conducted on December 2, 2016. Groundwater samples were collected from new pilot test area monitoring wells AOC12-MW401, located in the EnviroBlend (EB) injection area, and AOC12-MW402, located in the TerraBond (TB) injection area. The wells were installed more than 48 hours prior to sampling. Approximate well locations are provided in **Figure 1**.

Depth to groundwater was measured at each of the monitoring wells using an electronic interface probe (IP). The IP used detects water and light non-aqueous phase liquid (LNAPL), if present, to within accuracy of 0.01 foot. LNAPL was not detected in monitoring wells gauged during this event. Depth to water was measured at 11.50 feet from top of PVC for AOC12-MW401 (approximately 8.70 feet below ground surface [bgs]) and 6.60 feet for AOC12-MW402 (approximately 3.85 feet bgs). The water level data will be tabulated and converted to elevation after the wells have been surveyed.

CB&I collected groundwater samples from the monitoring wells using a modified low flow sampling technique. Each well was pumped at a rate that produced little or no draw down while parameters including temperature, pH, oxidation reduction potential (ORP), dissolved oxygen (DO), conductivity, and turbidity were monitored. Logs of field water quality parameters at these wells are provided in **Attachment 1** and final readings are summarized in **Table 1**. Groundwater samples were then collected after the parameters stabilized to ensure that each sample was representative of local aquifer conditions. Based upon the Groundwater RAP and the permit application submitted for TA-326, groundwater samples were submitted to Accutest Laboratories of Marlborough, Massachusetts for analysis of total and dissolved metals (arsenic, iron, magnesium, and vanadium; Method EPA

200.7); sulfate (Method ASTM516-90,02); nitrogen, nitrate, and nitrite (Method EPA 353.2); orthophosphate (Method EPA 365.3); nitrogen nitrite (Method SM 21 4500 NO2 B); total organic carbon (Method SM21 5310 B); and sulfide (Method SM4500S2-F-11). The complete laboratory analytical report for the Pilot Test baseline groundwater sampling event is included in **Attachment 2**.

Groundwater Results

Groundwater analytical results from the baseline sampling event are summarized in **Tables 1 and 2**. As appropriate, **Table 1** compares groundwater analytical results to the Surface Water Protection Criteria (SWPC), Additional SWPC (vanadium), and Alternative SWPC (arsenic). CTDEEP approved the Additional and Alternative SWPC for the subject site in their March 13, 2013 letter (CTDEEP, 2013). **Table 2** compares groundwater analytical results to CTDEEP Water Quality Criteria (WQC) for aquatic life per Section VI.B.1.I of TA-326.

The data presented in **Table 1** indicates:

- Concentrations of total arsenic detected were 24.3 micrograms per liter (ug/L) at AOC12-MW402 and 98.2 ug/L at AOC12-MW401. The concentrations of arsenic detected are greater than the Alternative SWPC (10 ug/L) at both wells (plus one field duplicate). These detections are generally consistent with previous sampling in the Pilot Test area (i.e., AOC12-MW305 and AOC12-MW306).
- Concentrations of total and dissolved vanadium at both wells (and the field duplicate) were non-detect or detected at low concentrations and significantly less than the ASWPC of 4,400 ug/L. These low detections are generally consistent with previous sampling in the Pilot Test area (i.e., AOC12-MW305 and AOC12-MW306).
- Iron and magnesium do not have historic data sets or ASWPC for comparison of results. These metals
 and geochemistry parameters were analyzed to evaluate reagent activity and not for compliance
 monitoring.

The groundwater data from several previous rounds of sampling have indicated that there is little difference between dissolved and total metals concentrations in groundwater at the Montville site (Shaw, 2010). The Pilot Test baseline groundwater monitoring results presented in **Tables 1 and 2** are generally consistent with that finding. The data presented in **Table 2** indicates that the concentration of dissolved arsenic at AOC12-MW401 of 97.0 ug/L is greater than the acute Water Quality Criteria (WQC) for saltwater of 69 ug/L. As such, the concentration of dissolved arsenic at AOC12-MW401, which is within 100 feet of the river, is consistent with previous groundwater monitoring results in the Pilot Test area and not newly elevated as a result of the Pilot Test activities.

Laboratory Analytical - QA/QC Evaluation

Laboratory analysis completed as part of this assessment was conducted in accordance with CTDEEP's Reasonable Confidence Protocol and the site specific Quality Assurance Project Plan (QAPP). The site specific QAPP was developed for the subject site in accordance with U.S. Environmental Protection Agency (USEPA) guidance (Shaw, 2011). The QAPP presents the requirements and procedures for conducting field sampling activities and investigations at the site so that (1) the data quality objectives specified for this project are met, (2) the field sampling protocols are documented and reviewed in a consistent manner, and (3) scientifically valid and defensible data are collected. Field sampling activities discussed above were completed in general compliance with the QAPP that has been generated for the site.

CB&I requested that laboratory analysis be conducted in accordance with the QAPP and CTDEEP's Reasonable Confidence Protocol (CTDEP, 2007). CB&I performed a data validation review for the laboratory report and documented the results in a data validation worksheet. The data validation worksheet is included with the laboratory report in **Attachment 2**. This worksheet is consistent with the data quality assessment and data usability evaluations detailed in CTDEEP guidance (CTDEP, 2009)

In general, laboratory analyses were completed in accordance with the site QAPP and CTDEEP's Reasonable Confidence Protocol. However, a few minor quality assurance/quality control (QA/QC) issues, which are summarized in the validation worksheet and laboratory report narrative, were identified. These identified QA/QC issues resulted in some detection limits and reported results being qualified. QA/QC issues noted included:

- The RPD for duplicate sample for orthophosphate were outside control limits. However, the percent difference is considered acceptable due to low duplicate and sample concentrations and no qualification is necessary.
- The orthophosphate samples were filtered at the laboratory prior to analysis though the method requires field filtration within 15 minutes of sampling. No qualification is necessary and field filtering will be implemented for future sample collection.
- The relative percent difference (RPD) of a serial dilution sample indicated arsenic was outside control limits. However, the percent difference is considered acceptable due to low initial sample concentration (<50 times instrument detection limit) and no qualification is necessary.

A number of sample results were reported at concentrations less than the reporting limit but greater than the method detection limit. Although this is not specifically a QA/QC issue, the results should be considered estimated and are flagged with a "J". In summary, each of the identified issues had no overall effect on the conclusions drawn from the data, and the data is acceptable for the purposes of this submittal.

Summary Review

Total arsenic concentrations in groundwater during the baseline monitoring event are generally consistent with previous monitoring at other wells in the area of interest for the Groundwater RAP. Baseline groundwater results will be compared to post-injection sampling results in future data summary transmittals prepared per TA-326.

If you have any questions regarding this letter or any other site matter, please do not hesitate to call me at 617-589-6143.

"I have personally examined and am familiar with the information submitted in this document and all attachments and certify that based on reasonable investigation, including my inquiry of those individuals responsible for obtaining the information, the submitted information is true, accurate and complete to the best of my knowledge and belief, and I understand that any false statement made in this document or its attachments may be punishable as a criminal offense."

Sincerely,

Andrew D. Walker, LEP, LSP

Project Manager

CB&I Environmental and Infrastructure, Inc.

Phone: 617-589-6143

E-mail Address: Andrew.Walker@CBI.com

Enclosures:

Tables

Table 1 - Groundwater Analytical Results Compared to ASWPC Table 2 - Groundwater Analytical Results Compared to Acute WQC

Figure

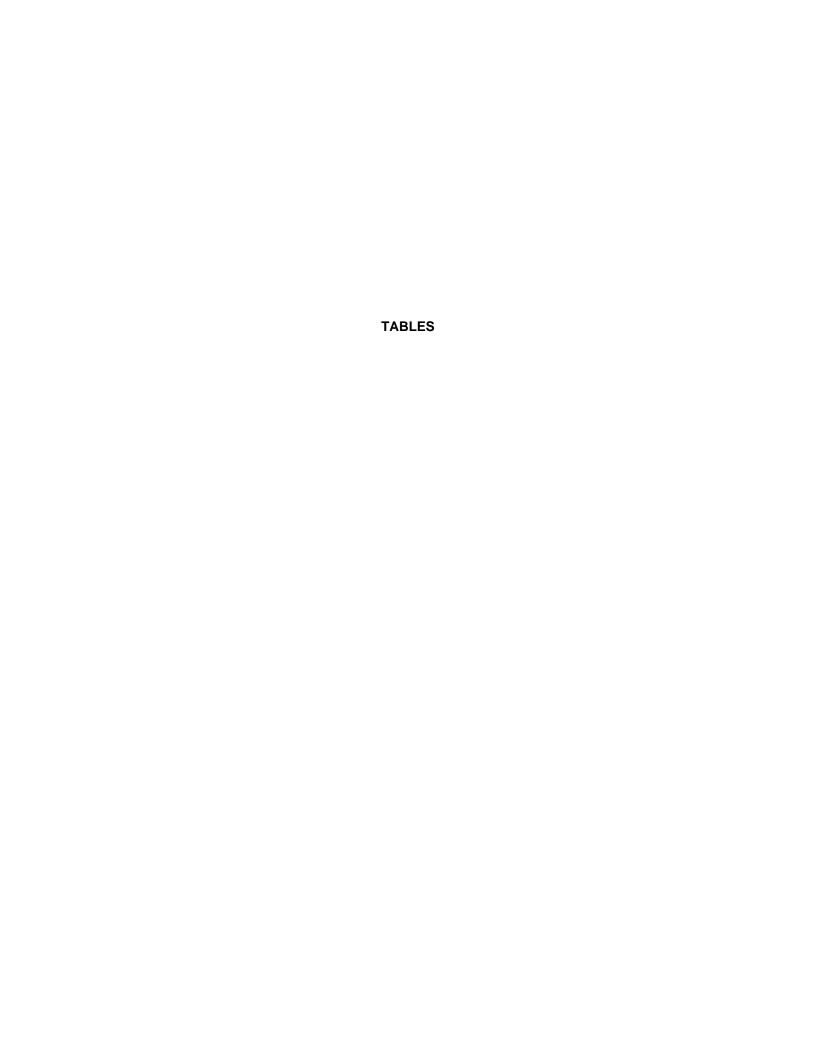
Figure 1 - Site Plan

Attachments

Attachment 1 - Field Sampling Data Sheets

Attachment 2 - Laboratory Analytical Reports for Groundwater with Data Validation Worksheet

cc: Ms. Jessica Stefanowicz, CTDEEP (electronic only)


Mr. Ian Cambridge, Montville Power LLC (hard copy and electronic)

Mr. Robert Spooner, NRG (electronic only)

Mr. Juan Perez, USEPA (electronic only)

REFERENCES

- CB&I, 2016a. Remedial Action Plan for Groundwater, Montville Electric Generating Station, Montville, Connecticut. CB&I Environmental and Infrastructure, Inc. February 25, 2016 (revisions dated June 16, 2016).
- CB&I, 2016b. Site Wide Remedial Action Plan, Montville Generating Station, Montville, Connecticut. CB&I Environmental and Infrastructure, Inc. July 19, 2016.
- CTDEP, 2007. Laboratory Quality Assurance and Quality Control Guidance, Reasonable Confidence Protocols Guidance Document. Connecticut Department of Environmental Protection. November 2007.
- CTDEP, 2009. Laboratory Quality Assurance and Quality Control, Data Quality Assessment and Data Usability Evaluation. Connecticut Department of Environmental Protection. May 2009.
- CTDEEP, 2013. Request for Criteria for Additional Polluting Substances and Alternative Criteria, Montville Station, 74 Lathrop Road, Montville. Connecticut Department of Energy & Environmental Protection. March 13, 2013.
- CTDEEP, 2016a. Groundwater Remedial Action Plan, Montville Station, 74 Lathrop Road, Montville, REM ID 4204. June 30, 2016
- CTDEEP, 2016b. Temporary Authorization TA-326, Montville Power LLC, Montville Station, 74 Lathrop Road, Montville. November 9, 2016
- Shaw, 2011. Quality Assurance Project Plan, NRG Montville Generating Station. Shaw Environmental, Inc. March 2008, Revised August 2011.

Table 1 Groundwater Analytical Results Compared to ASWPC Pilot Test Baseline December 2016 Montville Power LLC, Montville, CT

		SWPC or	AOC12-MW-401	AOC12-MW-402	AOC12-MW-402
		Alt/Add	12/2/2016	12/2/2016	12/2/2016
CONSTITUENT (ug/l)	UNITS	SWPC (1)	Primary	Primary	Duplicate 1
Metals (total)				-	
Arsenic	ug/l	10	{98.2}	{24.3}	{25.2}
Iron	ug/l	NE	32100	1680	1650
Magnesium	ug/l	NE	5700	1360BJ	1340BJ
Vanadium	ug/l	4400	25.3BJ	0.80BJ	<0.72
Metals (dissolved)					
Arsenic	ug/l	10	{97.0}	{24.1}	{24.3}
Iron	ug/l	NE	33000	1670	1700
Magnesium	ug/l	NE	5870	1370BJ	1370BJ
Vanadium	ug/l	4400	16.0BJ	<0.72	0.80BJ
Miscellaneous					
Nitrate/Nitrogen	ug/l	NE	<110	150	
Nitrite/Nitrogen	ug/l	NE	<10	<10	
Nitrogen, Nitrate and Nitrite	ug/l	NE	<100	150	
Orthophosphate	ug/l	NE	140	<100	
Sulfate	ug/l	NE	146000	13800	
Sulfide	ug/l	NE	280BJ	280BJ	
TOC	ug/l	NE	<1000	<1000	
Field Parameters					
рН		NE	6.36	6.47	
ORP	mV	NE	-23.5	-4.2	
Dissolved Oxygen	mg/l	NE	0.8	1.23	
Specific Conductance	mS/cm	NE	0.386	0.073	
Temperature	deg. C	NE	15.3	14.3	
Turbidity	NTU	NE	0	0	

Notes:

SWPC = Surface Water Protection Criteria

--- = Constituent not analyzed for.

NE = None Established.

(1)= Approved Alternative and Additional SWPC in March 13, 2013 CTDEEP letter

{Red Highlight} = Result is above appropriate SWPC

ug/I = micrograms per liter

B = Less than detection limit, lab qualifier

J = Less than detection limit, validation qualifier

mg/l = milligrams per liter

mS/cm = milliseimens per centimeter

deg. C = degrees celcius

NTU = nephelometric turbidity unit

Lab results have been validated.

Table 2 Groundwater Analytical Results Compared to WQC Acute Fresh and Salt Pilot Test Baseline December 2016 Montville Power LLC, Montville, CT

		Acute	Acute	AOC12-MW-401	AOC12-MW-402	AOC12-MW-402
CONSTITUENT		WQC	WQC	12/2/2016	12/2/2016	12/2/2016
CONSTITUENT	UNITS	Freshwater	Saltwater	Primary	Primary	Duplicate 1
Metals (total)						
Arsenic	ug/l	340	69	{98.2}	24.3	25.2
Iron	ug/l	NE	NE	32100	1680	1650
Magnesium	ug/l	NE	NE	5700	1360BJ	1340BJ
Vanadium	ug/l	NE	NE	25.3BJ	0.80BJ	<0.72
Metals (dissolved)						
Arsenic	ug/l	340	69	{97.0}	24.1	24.3
Iron	ug/l	NE	NE	33000	1670	1700
Magnesium	ug/l	NE	NE	5870	1370BJ	1370BJ
Vanadium	ug/l	NE	NE	16.0BJ	<0.72	0.80BJ
Miscellaneous						
Nitrate/Nitrogen	ug/l	NE	NE	<110	150	
Nitrite/Nitrogen	ug/l	NE	NE	<10	<10	
Nitrogen, Nitrate and Nitrite	ug/l	NE	NE	<100	150	
Orthophosphate	ug/l	NE	NE	140	<100	
Sulfate	ug/l	NE	NE	146000	13800	
Sulfide	ug/l	NE	NE	280BJ	280BJ	
тос	ug/l	NE	NE	<1000	<1000	

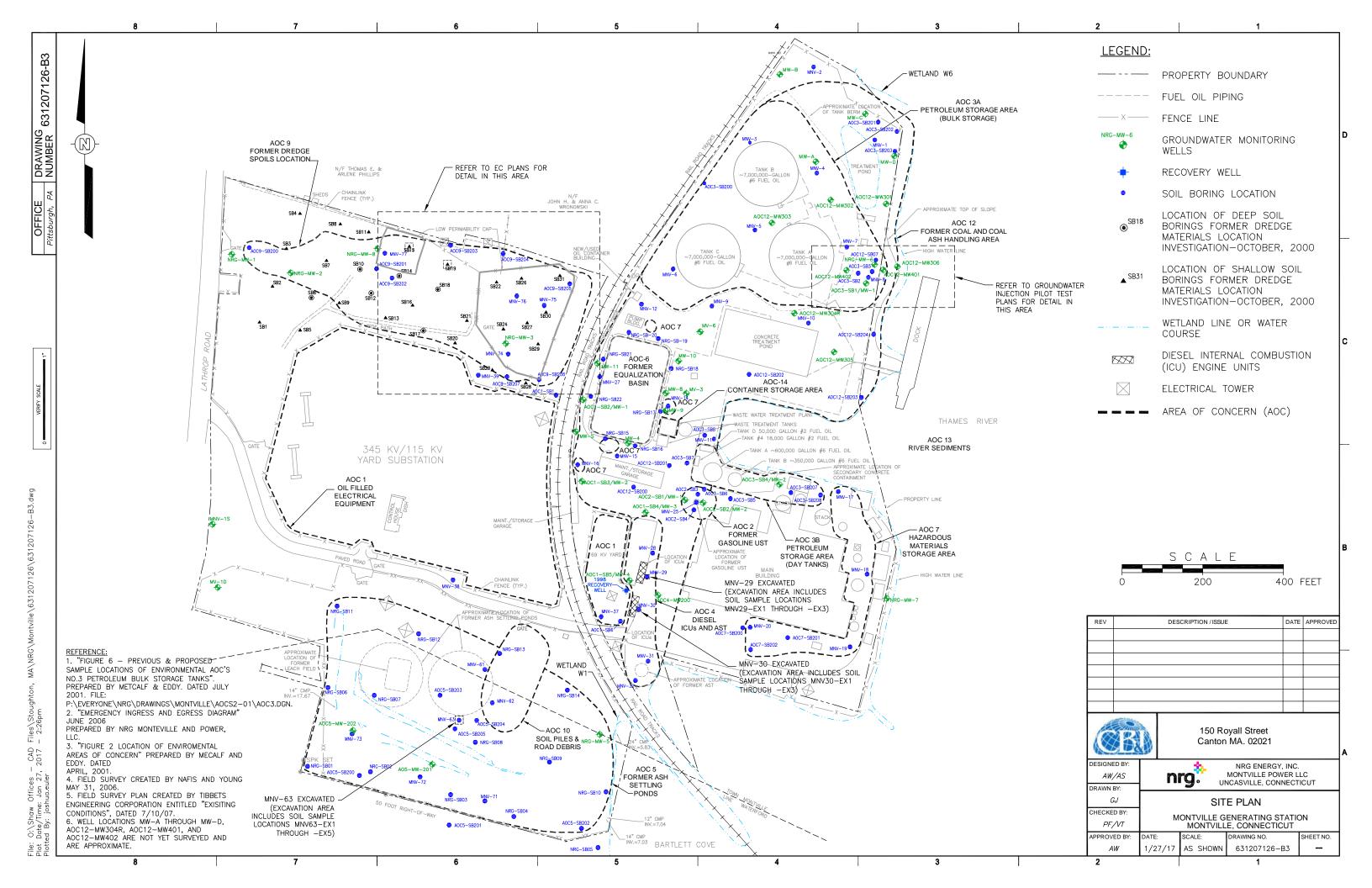
Notes:

WQC = Numerical Water Quality Criteria for chemical constituents.

ug/I = micrograms per liter.

B = Less than detection limit, lab qualifier

J = Less than detection limit, validation qualifier


--- = Constituent not analyzed for.

NE = None Established.

{Red Highlight} = Result is above WQC

Lab results have been validated.

ATTACHMENT 1

FIELD SAMPLING DATA SHEETS

Job Name: **NRG Montville** Job Number:

631207126-11021320

									Measured to	Top of PVC:	(Yes) No (Circle One)	
Well ID:	MW-40	2		Date: /	2-02-16		Depth To Water:	60'	Depth To LNAPL:	_	Depth To Bottom: 19.75	
Screen Inte	ell ID: MW - 4t 2 creen Interval: 2-17 (B(S)		(5)	Target Pump Intake Depth: 10 \ (365)							Well Depth: 17 (Bas)	
Pump Type	^	whe		Actual Pump Intake Depth:					Total Volume	Purged:	4,52	
Time	Depth to Water Fig. (ft.)	Pump Dial Setting ¹	Purge Rate (ml./min.)	Cum. Volume Purged (Liters)	Temperature (°C)	pH (SU)	Specific Conductance (ms/cm) ²	Dissolved Oxygen (mg/L)	ORP³ (mV)	Turbidity (NTU)	Comments	
Stabilizat	ion Criteria		3%		3%	0.1	3%	10% or <2	10	10% or <1	for three consecutive readings	
0770					17.8	8.90	0.085	376	-25.5	3814		
0725	66				13.6	8.10	0.07.2	2.27	-1619	35 Y		
0730				11	13.5	7.58	0.071	1.82	-14.4	33.7		
0735					13,3	7/11	0.069	1.72	-14,/	276	V.	
0740				26	14,0	6.81	0.069	1.60	-13.8	20,2		
0745	6.6				14.3	6.64	0.671	1.47	-13.7	15.7		
0750					13,9	660	0.67	1.45	-12.9	11.6		
0755				36	14.3	6.55	0.071	1.4/	-11.7	6.5		
0800	66				14.0	6.53	0.070	1.38	-10:9	50	P.	
6892				~3.5L	14.2	6.51	0.071	1.32	-10.6	2.3		
0810				47	14.4	649	0.072	1.29	- 8.5	-0,3		
0815					14:1	648	0,073	1,25	-67	-0,5		
0839				4.52	14.3	6.47	0.073	1.23	~ 4.2	-111		
							9					

1. Pump dial setting (example: Hertz, cycles/min, etc.)

2. μSiemens per cm (same as μmhos/cm) at 25 °C.

3. Oxidation reduction potential (ORP)

4. Target Drawdown not to exceed is 0.3 ft (about 4 inches)

Field Personnel:	A. Magnust	
------------------	------------	--

NRG Montville

Job Number:

631207126-11021320

							16		Measured to 1	op of PVC:	(Yes) No (Circle One)	
Well ID:	40C12-1	Mr-401		Date:	12-02-16	·	Depth To Water:	1.50	Depth To LNAPL:	-	Depth To 328	
Screen Inte	rval: 5	30 B	65	Target Pum	p Intake Depth:	12				Well Depth: $\partial \mathcal{L}$		
Pump Type	_			Actual Pum	p Intake Depth:	~ 14	•		Total Volume		7.54	
Time	Depth to Water (ft.)	Pump Dial Setting ¹	Purge Rate (ml./min.)	Cum. Volume Purged (Liters)	Temperature (°C)	pH (SU)	Specific Conductance (ms/cm) ²	Dissolved Oxygen (mg/L)	ORP³ (mV)	Turbidity (NTU)	Comments	
Stabilizat	ion Criteria		3%		3%	0.1	3%	10% or <2	10	10% or <1	for three consecutive readings	
0930					15.5	6.58	6378	2.66	7.1	34	*	
0935					15.0	644	0.378	1.52	-5.3	1.8		
0940					15.2	639	0.380	1.10	-13.2	2.4		
0945				IL	15.3	6.39	0.381	0.96	-17.8	2,0		
0450					15.5	6.38	0.386	88.0	-20.6	1.4		
0955					15.0	6.37	0.383	085	-77-0	0,9		
1000				7L	15.2	636	0.388	0.84	-33 Y	0.5		
1005					15.2	636	0.383	6.81	-12,9	-1,0		
1010				~2.5L	15.3	636	0.386	080	-23.5	-1,4	Sampled @ 1010	
										,		

Field Personnel:	A Maynest	
------------------	-----------	--

Pump dial setting (example: Hertz, cycles/min, etc.)
 μSiemens per cm (same as μmhos/cm) at 25°C.

^{3.} Oxidation reduction potential (ORP)

^{4.} Target Drawdown not to exceed is 0.3 ft (about 4 inches)

ATTAQUMENTO
ATTACHMENT 2 LABORATORY ANALYTICAL REPORT FOR GROUNDWATER WITH DATA VALIDATION WORKSHEE

Data Usability Worksheet

Project Name:

NRG Montville

Job Number:

631207126

Prepared By: Validated By:

Matrix:

Cathy Joe Mainville Kim Napier

Date: Date: 12/19/2016 1/3/2017

Analyte Group:

Groundwater Select Metals

Sulfate

Nitrogen, Nitrate + Nitrite

Orthophosphate Nitrogen Nitrite Total Organic Carbon Sulfide

Analytical Method: EPA 200.7

ASTM516-90,02 EPA 353.2 EPA 365.3 SM 21 4500 NO2 B

SM21 5310 B SM4500S2-F-11

Completed RCP Certification Form included: Yes

Laboratory ID No.: MC48956

Chain of Custody included in Data Package? Yes

Is it Complete ? Yes

		Allowabie	Allowable	1
Sample Collection Date	Analysis	Holding Time for	Holding Time	Analysis Date
12/2/2016	EPA 200.7 - Metals		180 Days (Mercury 28 Days)	12/14/2016
12/2/2016	ASTM516-90,02 - Sulfate		28 Days	12/2/2016
12/2/2016	EPA 353.2 - Nitrogen, Nitrate + Nitrite		28 Days	12/8/2016
12/2/2016	EPA 365.3 - Orthophosphate		48 Hours/ Client to filter sample at collection	12/2/2016
12/2/2016	SM 21 4500 NO2 B - Nitrogen Nitrite		48 hours	12/2/2016
12/2/2016	SM21 5310 B - Total Organic Carbon		28 Days	12/5/2016
12/2/2016	SM4500S2-F-11 - Sulfide		7 Days	12/5/2016

Sample temperature within QC limits:

Yes, 1.8 °C

Surrogate Recovery

Are all % recoveries within the allowable range? NA

If No, List sample ID where range was exceeded: N/A

MS/MSD

Are all MS/MSD sample recoveries within the QC limits?

If No, list sample ID, date and compound where limit was exceeded:

N/A

Laboratory Control Samples

Are all laboratory control sample recoveries within the QC limits?

Yes

If no, list sample ID where range was exceeded:

Equipment Field Blank ID:

EQUIPMENT BLANK

12/2/2016

Trip Blank ID: Method Blank: N/A

12/14/2016

Were any compounds identified in the method blank, field blank or trip blank above detection limits?

No

If so, list Sample ID/Compound/Concentration/Units:

Notes:

Batch GN55476

RPD(s) for Duplicate for Phosphate, Ortho are outside control limits for sample GN55475-D1. RPD acceptable due to low duplicate and sample concentrations.

No qualification necessary

MC48956-4 for Phosphate, Ortho: Filtration performed at the lab prior to analysis. Method requires field filtration within 15 minutes of sampling. No qualifiers applied

MC48956-1 for Phosphate, Ortho: Filtration performed at the lab prior to analysis. Method requires field filtration within 15 minutes of sampling. No qualifiers applied

Batch MP97542

RPD(s) for Serial Dilution for Arsenic are outside control limits for sample MP97542-SD1. Percent difference acceptable due to low initial sample concentration (<50 times IDL). No qualification necessary

Results reported > MDL and < RL ("B"-flagged by the lab) should be considered as estimated and qualified "J"

Reviewed By:

Kim Napler

Lab Sample ID:

Client Sample ID: AOC12-MW-402

Matrix:

MC48956-1 AQ - Ground Water Date Sampled: 12/02/16

Date Received: 12/02/16 Percent Solids: n/a

Project:

NRG Montville Lathrop Road, Montville, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic ^a Iron ^a Magnesium ^a Vanadium ^a	24.3 1680 1360 B J 0.80 B	100 5000	2.8 18 90 0.72	ug/l ug/l ug/l ug/l	1 1 1	12/14/16 12/14/16	12/14/16 ANJ 12/14/16 ANJ 12/14/16 ANJ 12/14/16 ANJ	EPA 200.7 ¹ EPA 200.7 ¹ EPA 200.7 ¹ EPA 200.7 ¹	EPA 200.7 ² EPA 200.7 ² EPA 200.7 ² EPA 200.7 ²

(1) Instrument QC Batch: N:MA40958

(2) Prep QC Batch: N:MP97542

(a) Analysis performed at SGS Accutest, Dayton, NJ.

RL = Reporting Limit MDL = Method Detection Limit U = Indicates a result < MDL

Lab Sample ID:

Client Sample ID: AOC12-MW-402 MC48956-1

Matrix:

AQ - Ground Water

Date Sampled: 12/02/16

Date Received: 12/02/16 Percent Solids: n/a

Project:

NRG Montville Lathrop Road, Montville, CT

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Nitrogen, Nitrate a	0.15		0.019	mg/l	1	12/08/16 16:46 VY EPA 353.2
Nitrogen, Nitrate + Nitrite	0.15	0.10	0.018	mg/l	1	12/08/16 16:46 VY EPA 353.2
Nitrogen, Nitrite	< 0.010	0.010	0.0010	mg/l	1	12/02/16 14:10 MC SM 21 4500 NO2 B
Phosphate, Ortho ^b	< 0.10	0.10	0.015	mg/l	1	12/02/16 15:44 VY EPA 365.3
Sulfate	13.8	A 44 4 7 7	1.1	mg/l	1	12/02/16 EAL ASTM516-90,02
Sulfide ^c	0.28 B	2.0	0.26	mg/i	1 .	12/05/16 16:25 ANJ SM4500S2- F-11
Total Organic Carbon	<1.0	1.0	0.16	mg/l	1	12/05/16 16:40 VY SM21 5310 B

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

(b) Filtration performed at the lab prior to analysis. Method requires field filtration within 15 minutes of

(c) Analysis performed at SGS Accutest, Dayton, NJ.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

Report of Analysis

Page 1 of 1

Lab Sample ID:

Client Sample ID: AOC12-MW-402

Matrix:

MC48956-1F AQ - Groundwater Filtered Date Sampled: 12/02/16

Percent Solids: n/a

Date Received: 12/02/16

Project:

NRG Montville Lathrop Road, Montville, CT

Dissolved Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic ^a Iron ^a Magnesium ^a Vanadium ^a	24.1 1670 1370 B J 0.72 U	100 5000	2.8 18 90 0.72	ug/l ug/l ug/l ug/l	1 1 1	12/14/16 12/14/16			EPA 200.7 ² EPA 200.7 ² EPA 200.7 ² EPA 200.7 ²

(1) Instrument QC Batch: N:MA40958 (2) Prep QC Batch: N:MP97542

(a) Analysis performed at SGS Accutest, Dayton, NJ.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

Client Sample ID: AOC12-MW-402-DUP

Lab Sample ID:

MC48956-2

Matrix:

AQ - Ground Water

Date Sampled: 12/02/16

Date Received: 12/02/16

Percent Solids: n/a

Project:

NRG Montville Lathrop Road, Montville, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic ^a Iron ^a Magnesium ^a Vanadium ^a	25.2 1650 1340 B J 0.72 U	100 5000	2.8 18 90 0.72	ug/l ug/l ug/l ug/l	1 1 1 1	12/14/16 12/14/16	12/14/16 ANJ		EPA 200.7 ² EPA 200.7 ² EPA 200.7 ² EPA 200.7 ²

(1) Instrument QC Batch: N:MA40958

(2) Prep QC Batch: N:MP97542

(a) Analysis performed at SGS Accutest, Dayton, NJ.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

Client Sample ID: AOC12-MW-402-DUP

Lab Sample ID:

MC48956-2F

Matrix:

AQ - Groundwater Filtered

Date Sampled: 12/02/16

Date Received: 12/02/16 Percent Solids: n/a

Project:

NRG Montville Lathrop Road, Montville, CT

Dissolved Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic ^a Iron ^a Magnesium ^a Vanadium ^a	24.3 1700 1370 B J 0.80 B J	100 5000	2.8 18 90 0.72	ug/l ug/l ug/l ug/l	1 1 1	12/14/16 12/14/16	12/14/16 ANJ 12/14/16 ANJ 12/14/16 ANJ 12/14/16 ANJ	EPA 200.7 ¹ EPA 200.7 ¹	EPA 200.7 ² EPA 200.7 ² EPA 200.7 ² EPA 200.7 ²

(1) Instrument QC Batch: N:MA40958

(2) Prep QC Batch: N:MP97542

(a) Analysis performed at SGS Accutest, Dayton, NJ.

RL = Reporting Limit MDL = Method Detection Limit U = Indicates a result < MDL

Lab Sample ID:

Client Sample ID: AOC12-MW-401 MC48956-4

Matrix:

AQ - Ground Water

Date Sampled: 12/02/16

Date Received: 12/02/16 Percent Solids: n/a

Project:

NRG Montville Lathrop Road, Montville, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic ^a Iron ^a Magnesium ^a Vanadium ^a	98.2 32100 5700 25.3 B	100 5000	2.8 18 90 0.72	ug/l ug/l ug/l ug/l	1 1 1	12/14/16 12/14/16	12/14/16 ANJ	EPA 200.7 ¹ EPA 200.7 ¹ EPA 200.7 ¹ EPA 200.7 ¹	EPA 200.7 ² EPA 200.7 ² EPA 200.7 ² EPA 200.7 ²

(1) Instrument QC Batch: N:MA40958

(2) Prep QC Batch: N:MP97542

(a) Analysis performed at SGS Accutest, Dayton, NJ.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

Client Sample ID: AOC12-MW-401

Lab Sample ID: Matrix:

MC48956-4

AQ - Ground Water

Date Sampled: 12/02/16

Date Received: 12/02/16

Percent Solids: n/a

Project:

NRG Montville Lathrop Road, Montville, CT

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Nitrogen, Nitrate ^a Nitrogen, Nitrate + Nitrite Nitrogen, Nitrite Phosphate, Ortho ^b Sulfate Sulfide ^c	<0.11 <0.10 <0.010 0.14 146 0.28 B	0.10 0.010 0.10 50	0.019 0.018 0.0010 0.015 11 0.26	mg/l mg/l mg/l mg/l mg/l mg/l	1 1 1 1 10	12/08/16 16:47 VY EPA 353.2 12/08/16 16:47 VY EPA 353.2 12/02/16 14:10 MC SM 21 4500 NO2 B 12/02/16 15:44 VY EPA 365.3 12/02/16 EAL ASTM516-90,02 12/05/16 16:25 ANJ SM4500S2- F-11
Total Organic Carbon	<1.0	EN 12 - 19	0.16	mg/l	1	12/05/16 16:53 VY SM21 5310 B

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

(b) Filtration performed at the lab prior to analysis. Method requires field filtration within 15 minutes of sampling.

(c) Analysis performed at SGS Accutest, Dayton, NJ.

Client Sample ID: AOC12-MW-401

Lab Sample ID:

MC48956-4F

Matrix:

AQ - Groundwater Filtered

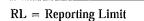
Date Sampled: 12/02/16

Date Received: 12/02/16

Project:

NRG Montville Lathrop Road, Montville, CT

Percent Solids: n/a


Dissolved Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic ^a Iron ^a Magnesium ^a Vanadium ^a	97.0 33000 5870 16.0 B 丁	100 5000	2.8 18 90 0.72	ug/l ug/l ug/l ug/l	1 1 1 1	12/14/16 12/14/16	12/14/16 ANJ 12/14/16 ANJ 12/14/16 ANJ 12/14/16 ANJ	EPA 200.7 ¹ EPA 200.7 ¹	EPA 200.7 ² EPA 200.7 ² EPA 200.7 ² EPA 200.7 ²

(1) Instrument QC Batch: N:MA40958

(2) Prep QC Batch: N:MP97542

(a) Analysis performed at SGS Accutest, Dayton, NJ.

MDL = Method Detection Limit

U = Indicates a result < MDL

ACCUTEST New England

12/16/16

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

e-Hardcopy 2.0
Automated Report

Technical Report for

CB&I

NRG Montville Lathrop Road, Montville, CT 631207126

SGS Accutest Job Number: MC48956

Sampling Date: 12/02/16

CB&I 150 Royall Street Canton, MA 02021 andrea.steele@cbi.com

ATTN: Andrea Steele

Total number of pages in report: 46

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

H. (Brad) Madadian Lab Director

Client Service contact: Jeremy Vienneau 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO (MA00136) MN (11546AA) NC (653) IL (002337) WI (399080220) DOD ELAP (L-A-B L2235)

This report shall not be reproduced, except in its entirety, without the written approval of SGS Accutest. Test results relate only to samples analyzed.

SGS

1 of 46

-1-

Table of Contents

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	7
Section 4: Sample Results	9
4.1: MC48956-1: AOC12-MW-402	10
4.2: MC48956-1F: AOC12-MW-402	12
4.3: MC48956-2: AOC12-MW-402-DUP	13
4.4: MC48956-2F: AOC12-MW-402-DUP	14
4.5: MC48956-3: EQUIPMENT BLANK	15
4.6: MC48956-4: AOC12-MW-401	16
4.7: MC48956-4F: AOC12-MW-401	18
Section 5: Misc. Forms	19
5.1: Chain of Custody	20
5.2: RCP Form	22
5.3: RCP Form (SGS Accutest New Jersey)	23
5.4: Sample Tracking Chronicle	24
5.5: QC Evaluation: CT RCP Limits	26
Section 6: General Chemistry - QC Data Summaries	27
6.1: Method Blank and Spike Results Summary	28
6.2: Duplicate Results Summary	29
6.3: Matrix Spike Results Summary	30
Section 7: Misc. Forms (SGS Accutest New Jersey)	31
7.1: Chain of Custody	32
7.2: Sample Tracking Chronicle	36
7.3: QC Evaluation: CT RCP Limits	37
Section 8: Metals Analysis - QC Data (SGS Accutest New Jersey)	38
8.1: Prep QC MP97542: As,Fe,Mg,V	
Section 9: General Chemistry - QC Data (SGS Accutest New Jersey)	45

Sample Summary

CB&I

Job No: MC48956

NRG Montville Lathrop Road, Montville, CT Project No: 631207126

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
MC48956-1	12/02/16	08:20 AM	12/02/16	AQ	Ground Water	AOC12-MW-402
MC48956-1F	12/02/16	08:20 AM	12/02/16	AQ	Groundwater Filtered	AOC12-MW-402
MC48956-2	12/02/16	08:20 AM	12/02/16	AQ	Ground Water	AOC12-MW-402-DUP
MC48956-2F	12/02/16	08:20 AM	12/02/16	AQ	Groundwater Filtered	AOC12-MW-402-DUP
MC48956-3	12/02/16	09:00 AM	12/02/16	AQ	Equipment Blank	EQUIPMENT BLANK
MC48956-4	12/02/16	10:10 AM	12/02/16	AQ	Ground Water	AOC12-MW-401
MC48956-4F	12/02/16	10:10 AM	12/02/16	AQ	Groundwater Filtered	AOC12-MW-401

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: CB&I Job No MC48956

Site: NRG Montville Lathrop Road, Montville, CT Report Date 12/15/2016 6:30:39 P

4 Sample(s) were collected on 12/02/2016 and were received at SGS Accutest New England on 12/02/2016 properly preserved, at 1.8 Deg. C and intact. These Samples received a job number of MC48956. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Metals By Method EPA 200.7

Matrix: AQ Batch ID: N:MP97542

- MC48956-1: Analysis performed at SGS Accutest, Dayton, NJ.
- MC48956-2,3,4: Analysis performed at SGS Accutest, Dayton, NJ.

Wet Chemistry By Method ASTM516-90,02

Matrix: AQ Batch ID: GN55468

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Wet Chemistry By Method EPA 353.2

Matrix: AQ Batch ID: GP21174

- All samples were distilled within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Matrix: AQ Batch ID: R39334

MC48956-1 for Nitrogen, Nitrate: Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Matrix: AO Batch ID: R39335

MC48956-4 for Nitrogen, Nitrate: Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Wet Chemistry By Method EPA 365.3

Matrix: AO Batch ID: GN55475

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) MC48956-1MS, MC48956-1DUP were used as the QC samples for Phosphate, Ortho.
- RPD(s) for Duplicate for Phosphate, Ortho are outside control limits for sample GN55475-D1. RPD acceptable due to low duplicate and sample concentrations.
- MC48956-4 for Phosphate, Ortho: Filtration performed at the lab prior to analysis. Method requires field filtration within 15 minutes of sampling.
- MC48956-1 for Phosphate, Ortho: Filtration performed at the lab prior to analysis. Method requires field filtration within 15 minutes of sampling.

Wet Chemistry By Method SM 21 4500 NO2 B

Matrix: AQ Batch ID: GP21167

- All samples were distilled within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Wet Chemistry By Method SM21 5310 B

Matrix: AO Batch ID: GP21171

- All samples were distilled within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) MC48956-1DUP, MC48956-1MS were used as the QC samples for Total Organic Carbon.

Wet Chemistry By Method SM4500S2- F-11

Matrix: AQ Batch ID: N:GN56002

- MC48956-1 for Sulfide: Analysis performed at SGS Accutest, Dayton, NJ.
- MC48956-4 for Sulfide: Analysis performed at SGS Accutest, Dayton, NJ.

SGS Accutest New England certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Laboratory Director for SGS Accutest New England or assignee as verified by the signature on the cover page has authorized the release of this report(MC48956).

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: SGS Accutest New England Job No MC48956

Site: FDG: NRG Montville Lathrop Road, Montville, CT Report Date 12/15/2016 11:55:06 A

On 12/03/2016, 4 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS Accutest at a maximum corrected temperature of 3.5 C. Samples were intact and chemically preserved, unless noted below. A SGS Accutest Job Number of MC48956 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Metals By Method EPA 200.7

Matrix: AO Batch ID: MP97542

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JC33051-1FSDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Arsenic are outside control limits for sample MP97542-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</p>

Wet Chemistry By Method SM4500S2- F-11

Matrix: AQ Batch ID: GN56002

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

SGS Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS Accutest is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by SGS Accutest indicated via signature on the report cover

Summary of Hits Job Number: MC48956

Job Number: MC48956 Account: CB&I

Project: NRG Montville Lathrop Road, Montville, CT

Collected: 12/02/16

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method			
MC48956-1	AOC12-MW-402								
Arsenic ^a Iron ^a Magnesium ^a Vanadium ^a Nitrogen, Nitrate Nitrogen, Nitrate Sulfate Sulfide ^a		24.3 1680 1360 B 0.80 B 0.15 0.15 13.8 0.28 B	3.0 100 5000 50 0.11 0.10 5.0 2.0	2.8 18 90 0.72	ug/l ug/l ug/l ug/l mg/l mg/l mg/l	EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 353.2 EPA 353.2 ASTM516-90,02 SM4500S2- F-11			
MC48956-1F	F AOC12-MW-402								
Arsenic ^a Iron ^a Magnesium ^a		24.1 1670 1370 B	3.0 100 5000	2.8 18 90	ug/l ug/l ug/l	EPA 200.7 EPA 200.7 EPA 200.7			
MC48956-2	AOC12-MW-402-DUP								
Arsenic ^a Iron ^a Magnesium ^a		25.2 1650 1340 B	3.0 100 5000	2.8 18 90	ug/l ug/l ug/l	EPA 200.7 EPA 200.7 EPA 200.7			
MC48956-2F	AOC12-MW-402-	DUP							
Arsenic ^a Iron ^a Magnesium ^a Vanadium ^a		24.3 1700 1370 B 0.80 B	3.0 100 5000 50	2.8 18 90 0.72	ug/l ug/l ug/l ug/l	EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7			
MC48956-3	EQUIPMENT BL	ANK							
No hits reported	in this sample.								
MC48956-4	AOC12-MW-401								
Arsenic ^a Iron ^a Magnesium ^a Vanadium ^a Phosphate, Ortho Sulfate Sulfide ^a	, c	98.2 32100 5700 25.3 B 0.14 146 0.28 B	3.0 100 5000 50 0.10 50 2.0	2.8 18 90 0.72	ug/l ug/l ug/l ug/l mg/l mg/l	EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 365.3 ASTM516-90,02 SM4500S2- F-11			

Summary of Hits

Job Number: MC48956 **Account:** CB&I

Project: NRG Montville Lathrop Road, Montville, CT

Collected: 12/02/16

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
MC48956-4F	AOC12-MW-401					
Arsenic ^a		97.0	3.0	2.8	ug/l	EPA 200.7
Iron ^a		33000	100	18	ug/l	EPA 200.7
Magnesium ^a		5870	5000	90	ug/l	EPA 200.7
Vanadium ^a		16.0 B	50	0.72	ug/l	EPA 200.7

- (a) Analysis performed at SGS Accutest, Dayton, NJ.
- (b) Calculated as: (Nitrogen, Nitrate + Nitrite) (Nitrogen, Nitrite)
- (c) Filtration performed at the lab prior to analysis. Method requires field filtration within 15 minutes of sampling.

Section 4

Report of Analysis

Client Sample ID: AOC12-MW-402 Lab Sample ID: MC48956-1

Lab Sample ID:MC48956-1Date Sampled:12/02/16Matrix:AQ - Ground WaterDate Received:12/02/16Percent Solids:n/a

Project: NRG Montville Lathrop Road, Montville, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic ^a	24.3	3.0	2.8	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²
Iron ^a	1680	100	18	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²
Magnesium a	1360 B	5000	90	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²
Vanadium ^a	0.80 B	50	0.72	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²

(1) Instrument QC Batch: N:MA40958(2) Prep QC Batch: N:MP97542

(a) Analysis performed at SGS Accutest, Dayton, NJ.

RL = Reporting Limit
MDL = Method Detection Limit

U = Indicates a result < MDL

Page 1 of 1

Report of Analysis

Client Sample ID: AOC12-MW-402 Lab Sample ID: MC48956-1 **Date Sampled:** 12/02/16 Matrix: AQ - Ground Water **Date Received:** 12/02/16 **Percent Solids:** n/a

Project: NRG Montville Lathrop Road, Montville, CT

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Nitrogen, Nitrate ^a	0.15	0.11	0.019	mg/l	1	12/08/16 16:46 VY EPA 353.2
Nitrogen, Nitrate + Nitrite	0.15	0.10	0.018	mg/l	1	12/08/16 16:46 VY EPA 353.2
Nitrogen, Nitrite	< 0.010	0.010	0.0010	mg/l	1	12/02/16 14:10 MC SM 21 4500 NO2 B
Phosphate, Ortho b	< 0.10	0.10	0.015	mg/l	1	12/02/16 15:44 VY EPA 365.3
Sulfate	13.8	5.0	1.1	mg/l	1	12/02/16 EAL ASTM516-90,02
Sulfide ^c	0.28 B	2.0	0.26	mg/l	1	12/05/16 16:25 ANJ SM4500S2- F-11
Total Organic Carbon	< 1.0	1.0	0.16	mg/l	1	12/05/16 16:40 VY SM21 5310 B

- (a) Calculated as: (Nitrogen, Nitrate + Nitrite) (Nitrogen, Nitrite)
- (b) Filtration performed at the lab prior to analysis. Method requires field filtration within 15 minutes of sampling.
- (c) Analysis performed at SGS Accutest, Dayton, NJ.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

ACCUTEST

Page 1 of 1

4

Report of Analysis

Client Sample ID: AOC12-MW-402

Lab Sample ID:MC48956-1FDate Sampled:12/02/16Matrix:AQ - Groundwater FilteredDate Received:12/02/16

Project: NRG Montville Lathrop Road, Montville, CT

Percent Solids: n/a

Dissolved Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic ^a	24.1	3.0	2.8	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²
Iron a	1670	100	18	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²
Magnesium a	1370 B	5000	90	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²
Vanadium ^a	0.72 U	50	0.72	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²

(1) Instrument QC Batch: N:MA40958(2) Prep QC Batch: N:MP97542

(a) Analysis performed at SGS Accutest, Dayton, NJ.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

Report of Analysis

Client Sample ID: AOC12-MW-402-DUP

Lab Sample ID:MC48956-2Date Sampled:12/02/16Matrix:AQ - Ground WaterDate Received:12/02/16Percent Solids:n/a

Project: NRG Montville Lathrop Road, Montville, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic ^a	25.2	3.0	2.8	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²
Iron ^a	1650	100	18	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²
Magnesium a	1340 B	5000	90	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²
Vanadium ^a	0.72 U	50	0.72	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²

(1) Instrument QC Batch: N:MA40958(2) Prep QC Batch: N:MP97542

(a) Analysis performed at SGS Accutest, Dayton, NJ.

RL = Reporting Limit MDL = Method Detection Limit U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

Report of Analysis

Client Sample ID: AOC12-MW-402-DUP

Lab Sample ID:MC48956-2FDate Sampled:12/02/16Matrix:AQ - Groundwater FilteredDate Received:12/02/16Percent Solids:n/a

Project: NRG Montville Lathrop Road, Montville, CT

Dissolved Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic ^a	24.3	3.0	2.8	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²
Iron a	1700	100	18	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²
Magnesium a	1370 B	5000	90	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²
Vanadium ^a	0.80 B	50	0.72	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²

(1) Instrument QC Batch: N:MA40958(2) Prep QC Batch: N:MP97542

(a) Analysis performed at SGS Accutest, Dayton, NJ.

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL

Report of Analysis

Client Sample ID: EQUIPMENT BLANK

Lab Sample ID:MC48956-3Date Sampled:12/02/16Matrix:AQ - Equipment BlankDate Received:12/02/16Percent Solids:n/a

Project: NRG Montville Lathrop Road, Montville, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic ^a	2.8 U	3.0	2.8	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²
Iron ^a	18 U	100	18	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²
Magnesium a	90 U	5000	90	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²
Vanadium ^a	0.72 U	50	0.72	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²

(1) Instrument QC Batch: N:MA40958(2) Prep QC Batch: N:MP97542

(a) Analysis performed at SGS Accutest, Dayton, NJ.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

4

Report of Analysis

Client Sample ID: AOC12-MW-401

Lab Sample ID: MC48956-4

Matrix: AQ - Ground Water

Date Sampled: 12/02/16

Percent Solids: n/a

Project: NRG Montville Lathrop Road, Montville, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic ^a	98.2	3.0	2.8	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²
Iron ^a	32100	100	18	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²
Magnesium a	5700	5000	90	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²
Vanadium ^a	25.3 B	50	0.72	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²

(1) Instrument QC Batch: N:MA40958(2) Prep QC Batch: N:MP97542

(a) Analysis performed at SGS Accutest, Dayton, NJ.

RL = Reporting Limit
MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

Report of Analysis

Client Sample ID: AOC12-MW-401

Lab Sample ID: MC48956-4

Matrix: AQ - Ground Water

Date Sampled: 12/02/16

Percent Solids: n/a

Project: NRG Montville Lathrop Road, Montville, CT

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Nitrogen, Nitrate ^a	< 0.11	0.11	0.019	mg/l	1	12/08/16 16:47 VY EPA 353.2
Nitrogen, Nitrate + Nitrite	< 0.10	0.10	0.018	mg/l	1	12/08/16 16:47 VY EPA 353.2
Nitrogen, Nitrite	< 0.010	0.010	0.0010	mg/l	1	12/02/16 14:10 MC SM 21 4500 NO2 B
Phosphate, Ortho b	0.14	0.10	0.015	mg/l	1	12/02/16 15:44 VY EPA 365.3
Sulfate	146	50	11	mg/l	10	12/02/16 EAL ASTM516-90,02
Sulfide ^c	0.28 B	2.0	0.26	mg/l	1	12/05/16 16:25 ANJ SM4500S2- F-11
Total Organic Carbon	< 1.0	1.0	0.16	mg/l	1	12/05/16 16:53 VY SM21 5310 B

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

(b) Filtration performed at the lab prior to analysis. Method requires field filtration within 15 minutes of sampling.

(c) Analysis performed at SGS Accutest, Dayton, NJ.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

Report of Analysis

Client Sample ID: AOC12-MW-401 Lab Sample ID: MC48956-4F

Lab Sample ID:MC48956-4FDate Sampled:12/02/16Matrix:AQ - Groundwater FilteredDate Received:12/02/16

Percent Solids: n/a

Project: NRG Montville Lathrop Road, Montville, CT

Dissolved Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic ^a	97.0	3.0	2.8	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²
Iron ^a	33000	100	18	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²
Magnesium a	5870	5000	90	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²
Vanadium ^a	16.0 B	50	0.72	ug/l	1	12/14/16	12/14/16 ANJ	EPA 200.7 ¹	EPA 200.7 ²

(1) Instrument QC Batch: N:MA40958(2) Prep QC Batch: N:MP97542

(a) Analysis performed at SGS Accutest, Dayton, NJ.

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL

Section 5

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Chain of Custody
- RCP Form
- RCP Form (SGS Accutest New Jersey)
- Sample Tracking Chronicle
- QC Evaluation: CT RCP Limits

SGS	ACCUTI
-----	--------

Date Time:

CHAIN OF CUSTODY

SGS ACCU	TEST		CHA	SGS Ac Drive, B	cutest of uilding O	New Eng	gland	h, MA	_	2		F	ED-EX T	racking	#				Fattle Ord		GE	1	OF	1	٦
	e made do ti		TE	508-481	I-6200 F ww.accut	AX: 508	-481-7	7753				9	GS Accu	itest Que	ate #				SGS Accu	utest Joi	b# Y	W.	480	756	-
Client / Reporting Information			Pre	ject Inf	ormatic	on								Regu	ested	Analy	SIS (see TE	STCO	IDE 6		110	F-80000000	Matrix Codes	4
Company Name	Project Name	ALD / /	1 1					20000000000			constitutoso		A	7			2.12.1	1							7
Street Address	Street:	NR6 A	Tentuille	No.			enanenania	AN SALES COMPANY	reinthinnen		DESCRIPTION OF THE PARTY OF THE	anaism.	3	1	1	- 1							D	W - Drinking Wate	ar ar
150 R-yal/ 5+ City State Zip	74	Lathre	R.J	202200	Billing In	formatic	o (lf	difform	nt fr	om Por	MODELLINE MODELLINE	atheres.	5	7	Kitcherota				1					WW - Water W - Surface Wate	
Candra My Ododl	City:	Lathrage ;	-	Comp	any Name	,		2771676	111.71	<i>3117</i> (46)	,011 to	7	Meth. 134.7)	(Method son.										SO - Soil SL- Sludge SED-Sediment	
Project Contact Andrew Steele Andrews Steele eco	SE 63/	27776			l Address								2	`	Orther phis plack								- 1	Ot - Oil IQ - Other Liquid AIR - Air	
# 779-573 - 9090 Sampler(s) Name(s) Phone #	Client PO# P	-Card		City				State		Ζiρ				Ms,	1. Ph.					ı				SOL - Other Solid WP - Wipe	
Sampler(s) Name(s) Phone #	Project Manage			Atten	tion:		PO#				-	11.61	3	As, Fe,	200		Suffer	4					E	F8-Field Blank I- Equipment Blan RB- Rinse Blank	k
Austr Magnest 774-551-614	7	Collection			T		т					2	4.	4		0	7	₹						TB-Trip Blank	
Sealer		Collection		T	1		\vdash	Number	of pre	served l	Solties W	2	4	h	5.12k,	70	Ví	چ		1		-	-	******************	4
Sample # Field ID / Point of Collection	MEOH/DI Vial #	Dale	Time	Sampled t-y	Matrix	# of bottle:	ξ	NaOH HNO3	H2SO4	S S S	NCO S		Tota	Diss	4					l	1	l	١.	AB USE ONLY	
1 Au D-MV-40)		12.02	07.70	AM	64	9		2 2	ī	ilit		3	1	T	1	3	2	1					十	AB OGE ONLY	1
-2 AU-12- ML-402- DUP		13-67	0650	AM	64	a	\Box	Э	7	`\\	\top	\top	1	1					\dashv			T	+		1
-3 Europent Dlank		12-07	0900	AM	64	(\sqcap	11	1	\Box	\top		Ì			1				T		\neg	\top		1
4 AU12-MU-401		17-02	1010	AM	GW	9	Π;	22	1	1		3	1	1	1	3	2	1		7					1
							П	П		П	П	Τ											\top		1
										П		Т								Ī					1
							П																		1
							П				П												\top	90	1
																								SUB	
										Ш	Ш														1
										Ш															
						000000004100000	Ш	Ш		Ш	Ш	L	\perp												
Turnaround Time (Business days)	Approved By (SGS	Acculest PM): / Date:			Commerci			verable			n SP Cati	egorv	A						nts / Sp						┨.
X Std. 10 Business Days					Commercia	el "B" (L	evel 2)] NYA	SP Cate	egory		L	(any	olek	4/14/	7515	in love	9	ves (Es	ph1	As, Fe 130	D.
Std. 5 Business Days (By Contract only) 5 Day RUSH INITIAL	ASESSME	ENT V			ULLT1 ()	Level 3+4	1)			_	Forms Forma				1.1	n 66.	L	el	be	: M	16 F	real	00.		l
3 Day EMERGENCY			-		MA MCP					Othe				- -	11 1	1.0	0	/	,	. , , ,		-	FARE	'ing ' ind 55 t	
2 Day EMERGENCY LABEL 1 Day EMERGENCY	VERIFICAT	FION				Commerc		ial "A" ≃ ' = Resu			marv			-	WA	146	Kep	ich	Level	<u>/ :</u>	CTD	EP	RLP	and 55 0	r.opp
Emergency & Rush T/A data available VIA Lablink																	vil 1	47							
Relinquished by Sympter: Date Time:	Sa	mple Custody mu	st be docum	ented be	low each			s chan vished 8		ossess	ion, in	cludi	ng cou	rier d				D	eccived B						ĺ
and My 12.07	1100	1 1111	lldre				2	W	V)	Ú)	ell	7			10	2/2/	610	25/2		_4	Ü	/L	el		ĺ
linquished by Sampled Date Time:		Received By:					Reling	uished E	y:						Da	ite Time:		R	eceived By						i

MC48956: Chain of Custody Page 1 of 2

5.1

SGS Accutest Sample Receipt Summary

Job Number: MC	C48956 C	Client: CB&I			Project: NRG MONTVIL	LE	
Date / Time Received: 12/	2/2016 12:54:00 P	M Delivery	Method:	SGS Courier	Airbill #'s:		
Cooler Temps (Initial/Adjust	ted): #1: (1.8/1.8)	<u>:</u>					
Cooler Security Y	or N		Y or N	Sample Integrit	y - Documentation	Y or	N_
Custody Seals Present: V		COC Present:	ightharpoonup	Sample labels	present on bottles:	✓	
2. Custody Seals Intact:		ol Dates/Time OK	✓	2. Container labe	ling complete:	\checkmark	
Cooler Temperature	Y or N			3. Sample contain	ner label / COC agree:	\checkmark	
1. Temp criteria achieved:				Sample Integri	tv - Condition	Y or	N_
2. Thermometer ID:	IRGUN1;			Sample recvd		✓	
Cooler media:	Ice (Bag)			All containers a		~	
4. No. Coolers:	1			3. Condition of sa	ample:	Intact	:
Quality Control Preservatio	n Y or N	N/A		Sample Integri	ty - Instructions	Y or	N N/A
Trip Blank present / cooler:		✓		Analysis reque	ested is clear:	V	
2. Trip Blank listed on COC:		✓		2. Bottles receive	ed for unspecified tests	_	✓
3. Samples preserved properly:				Sufficient volu	me recvd for analysis:		
4. VOCs headspace free:		V		4. Compositing in	nstructions clear:		
		•		5. Filtering instru	ictions clear:		
Comments				•			

MC48956: Chain of Custody

Page 2 of 2

į.

U

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Client:

CB&I

1009644010 PO#

Project Number:

Accutest New England

NRG Montville Lathrop Road, Montville,

Laboratory Name:

Project Location:

Sampling Date(s): 12/2/2016 Laboratory Sample ID(s): MC48956-1, MC48956-2, MC48956-3, MC48956-4, MC48956-1F, MC48956-2F, MC48956-4F Methods: Refer to case narrative. For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CTDEP method- Yes No 🗆 1 specific Reasonable Confidence Protocol documents)? Yes \square No 🔽 1A Where all the method specified preservation and holding time requirements met? No 🗆 Yes 🔲 1B VPH and EPH mehods only: Was the VPH or EPH method conducted without significant modifications (See section 11.3 of respective methods) NA 🗹 Were all samples received by the laboratory in a condition consistent with Yes 🔽 No 🔲 2 that described on the associated chain-of-custody document(s)? Were samples received at an appropriate temperature (<6° C)? Yes 🗹 3 Nο Were all QA/QC performance criteria specified in the CTDEP Reasonable Yes 🔽 No \square Confidence Protocol documents achieved? Yes 🔽 No 🗆 5 a) Were reporting limits specified or referenced on the chain-of-custody? Yes 🔽 No 🗖 b) Were these reporting limits met? For each analytical method referenced in this laboratory report package, Yes 🔽 were results reported for all constituents identified in the method-specific No 🔲 analyte lists presented in the Reasonable Confidence Protocol documents? Are project-specific matrix spikes and laboratory duplicates included in this 7 Yes 🔽 data set? Note: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or #1B is "No", the data package does not meet the requirements for "Reasonable Confidence". l, the undersigned, attest under pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. Authorized Signature: HMudishum Position: Lab Director Printed Name: H. (Brad) Madadian Date: 12/16/2016 Accutest New England

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Laboratory Name:	Accutest New England	Client:	SGS Accu	test New England
Project Location:	FDG: NRG Montville Lathrop Road, Montville, CT	Project Nu	ımber:	FDG18607

Sampling Date(s): 12/2/2016

Laboratory Sample ID(s): MC48956-1, MC48956-2, MC48956-3, MC48956-4, MC48956-1F, MC48956-2F,

MC48956-3F, MC48956-4F

Methods: EPA 200.7. SM4500S2- F-11

Methods:	EPA 200.7, SM4500S2- F-11		
1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CTDEP method-specific Reasonable Confidence Protocol documents)?	Yes 🔽	No 🗖
1A	Where all the method specified preservation and holding time requirements met?	Yes 🔽	No 🗖
1B	VPH and EPH mehods only: Was the VPH or EPH method conducted without significant modifications (See section 11.3 of respective methods)	Yes 🗖	No 🗆
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	Yes 🔽	No 🗖
3	Were samples received at an appropriate temperature (<6° C)?	Yes 🗹	No 🗆
4	Were all QA/QC performance criteria specified in the CTDEP Reasonable Confidence Protocol documents achieved?	Yes 🗹	No □
5	a) Were reporting limits specified or referenced on the chain-of-custody?	Yes 🔽	No \square
	b) Were these reporting limits met?	Yes 🔽	No \square
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	Yes 🔽	No 🗖
7	Are project-specific matrix spikes and laboratory duplicates included in this data set?	Yes 🗖	No 🗹

Note: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or #1B is "No", the data package does not meet the requirements for "Reasonable Confidence".

I, the undersigned, attest under pains and penalties of perjury that, to the best of my knowledge and belie
and based upon my personal inquiry of those responsible for providing the information contained in this
analytical report, such information is accurate and complete.

Authorized

Maney +. Cole Signature: Position: Lab Director Printed Name: Nancy Cole Date: 12/15/2016

Mid-Atlantic Laboratory

Internal Sample Tracking Chronicle

CB&I

Job No: MC48956

NRG Montville Lathrop Road, Montville, CT Project No: 631207126

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
MC48956-1 AOC12-MV	Collected: 02-DEC-16 V-402	08:20 By: AM	Receiv	ved: 02-DEC-	16 By	: TF
MC48956-1 MC48956-1 MC48956-1 MC48956-1 MC48956-1	ASTM516-90,02 SM 21 4500 NO2 B EPA 365.3 SM4500S2- F-11 SM21 5310 B EPA 353.2 EPA 353.2 EPA 200.7	02-DEC-16 02-DEC-16 14:10 02-DEC-16 15:44 05-DEC-16 16:25 05-DEC-16 16:40 08-DEC-16 16:46 08-DEC-16 16:46 14-DEC-16 21:39	VY ANJ VY VY VY	02-DEC-16 05-DEC-16 08-DEC-16 14-DEC-16	VY VY	SO4 NO2 OPO4 S TOC NO3O NO32 AS,FE,MG,V
MC48956-2 AOC12-MV	Collected: 02-DEC-16 V-402-DUP	08:20 By: AM	Receiv	ved: 02-DEC-	16 By	: TF
MC48956-2	EPA 200.7	14-DEC-16 21:42	ANJ	14-DEC-16	ANJ	AS,FE,MG,V
MC48956-3 EQUIPMEN	Collected: 02-DEC-16 NT BLANK	09:00 By: AM	Receiv	ved: 02-DEC-	16 By	: TF
MC48956-3	EPA 200.7	14-DEC-16 21:45	ANJ	14-DEC-16	ANJ	AS,FE,MG,V
MC48956-4 AOC12-MV	Collected: 02-DEC-16 V-401	10:10 By: AM	Receiv	ved: 02-DEC-	16 By	: TF
MC48956-4 MC48956-4 MC48956-4 MC48956-4 MC48956-4	ASTM516-90,02 SM 21 4500 NO2 B EPA 365.3 SM4500S2- F-11 SM21 5310 B EPA 353.2 EPA 353.2 EPA 200.7	02-DEC-16 02-DEC-16 14:10 02-DEC-16 15:44 05-DEC-16 16:25 05-DEC-16 16:53 08-DEC-16 16:47 08-DEC-16 16:47 14-DEC-16 21:48	VY ANJ VY VY VY	02-DEC-16 05-DEC-16 08-DEC-16 14-DEC-16	VY VY	SO4 NO2 OPO4 S TOC NO3O NO32 AS,FE,MG,V
MC48956-1 AOC12-MV	Collected: 02-DEC-16 V-402	08:20 By: AM	Receiv	ved: 02-DEC-	·16 By	: TF
MC48956-1	EPA 200.7	14-DEC-16 21:51	ANJ	14-DEC-16	ANJ	AS,FE,MG,V

Internal Sample Tracking Chronicle

CB&I

Job No: MC48956

NRG Montville Lathrop Road, Montville, CT Project No: 631207126

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
	Prollected: 02-DEC-16 W-402-DUP	08:20 By: AM	Receiv	ved: 02-DEC-	-16 By	: TF
MC48956-2	2EPA 200.7	14-DEC-16 21:54	ANJ	14-DEC-16	ANJ	AS,FE,MG,V
MC48956-4 AOC12-MV	HCollected: 02-DEC-16 W-401	10:10 By: AM	Receiv	ved: 02-DEC	-16 By	: TF
MC48956-4	IEPA 200.7	14-DEC-16 21:58	ANJ	14-DEC-16	ANJ	AS,FE,MG,V

QC Evaluation: CT RCP Limits

Job Number: MC48956 Account: CB&I

Project: NRG Montville Lathrop Road, Montville, CT

Collected: 12/02/16

QC Sample ID CAS# Analyte Sample Result Result **Units Limits** Type Type

No Exceptions found.

5.5

^{*} Sample used for QC is not from job MC48956

Section 6

General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: MC48956 Account: FDG - CB&I

Project: NRG Montville Lathrop Road, Montville, CT

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Nitrogen, Nitrate + Nitrite Nitrogen, Nitrite Phosphate, Ortho Sulfate Total Organic Carbon	GP21174/GN55484 GP21167/GN55466 GN55475 GN55468 GP21171/GN55481	0.10 0.010 0.10 5.0 1.0	0.036 0.0 0.0 0.0	mg/1 mg/1 mg/1 mg/1	2 .02 .2 20 10	2.17 0.020 0.20 19.9 9.70	108.5 100.0 100.0 99.5 97.0	90-110% 80-120% 80-120% 80-120% 80-120%

Associated Samples:

Batch GN55468: MC48956-1, MC48956-4 Batch GN55475: MC48956-1, MC48956-4 Batch GP21167: MC48956-1, MC48956-4 Batch GP21171: MC48956-1, MC48956-4 Batch GP21174: MC48956-1, MC48956-4

(*) Outside of QC limits

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: MC48956 Account: FDG - CB&I

Project: NRG Montville Lathrop Road, Montville, CT

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Phosphate, Ortho	GN55475	MC48956-1	mg/l	0.079	0.048	48.8(a)	0-20%
Total Organic Carbon	GP21171/GN55481	MC48956-1	mg/l	0.0	0.0	0.0	

Associated Samples: Batch GN55475: MC48956-1, MC48956-4 Batch GP21171: MC48956-1, MC48956-4

(*) Outside of QC limits

(a) RPD acceptable due to low duplicate and sample concentrations.

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: MC48956 Account: FDG - CB&I

Project: NRG Montville Lathrop Road, Montville, CT

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Phosphate, Ortho	GN55475	MC48956-1	mg/l	0.079	.2	0.29	105.5	75-125%
Total Organic Carbon	GP21171/GN55481	MC48956-1	mg/l	0.0		9.2	92.0	75-125%

Associated Samples: Batch GN55475: MC48956-1, MC48956-4 Batch GP21171: MC48956-1, MC48956-4

- (*) Outside of QC limits
 (N) Matrix Spike Rec. outside of QC limits

Section 7

Misc. Forms

Custody Documents and Other Forms

(SGS Accutest New Jersey)

Includes the following where applicable:

- · Chain of Custody
- Sample Tracking Chronicle
- QC Evaluation: CT RCP Limits

MC48956
e Order:
Job Change

Requested Date:	ate:	12/5/2016		Received Date:	12/2/2016
Account Name:	эe:	CB&I		Due Date:	12/16/2016
Project Description:	ription:	NRG Montville Lathrop Road, Montville, CT	Road, Montville, CT	Deliverable:	CTRCP
CSR:		jeremyv		TAT (Days):	10
Sample #:	MC4895	Sample #: MC48956-1 through 4	Change:		
Dept:			Client would like to report MDL / J Values; Currently logged in at ALNJ to omit J Values.	L / J Values; Currently logge	d in at ALNJ to
TAT:	10				

	like to report MDL / J Values; Currently logged in at ALNJ to s.
Change:	Client would I omit J Values
MC48956-1 through 4	
nple #:	pt:

Above Changes Per:

SGS Accutest New Jersey

Date/Time: 12/5/2016 11:38:20 AM

To Client: This Change Order is confirmation of the revisions, previously discussed with the SGS Accutest Client Service Representative. MC48956: Chain of Custody Page 1 of 4

7.1

SGS Accutest Sample Receipt Summary

Job Number:	MC48956 Clien	t: SGS Accutest		Project: NRG	
Date / Time Received:	12/3/2016 10:00:00 AM	Delivery Method:	Other Courier	Airbill #'s:	
. `	asured) °C: Cooler 1: (2. rrected) °C: Cooler 1: (3.				
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature	•	Present: vistes/Time OK vistes/Time OK	1. Sample labels 2. Container labe	ity - Documentation s present on bottles: eling complete: iner label / COC agree:	<u>Y</u> or N ✓ □ ✓ □ ✓ □
Temp criteria achieved: Cooler temp verification Cooler media: No. Coolers:		_ _ _	Sample Integr 1. Sample recvd 2. All containers 3. Condition of s	accounted for:	Y or N ✓ □ Intact
Quality Control Present 1. Trip Blank present / coc 2. Trip Blank listed on COc 3. Samples preserved pro 4. VOCs headspace free:	oler:]	Analysis requ Bottles receiv Sufficient vol	ved for unspecified tests ume recvd for analysis: instructions clear:	Y or N N/A V
Comments Did not receive	e -3F (filtered volume)		·		

SM089-02 Rev. Date 12/1/16

MC48956: Chain of Custody

Page 2 of 4

7.1

SGS Accutest Sample - Problem Resolution

Accutest Job Number: MC48956

CSR: Michelle Response Date: 12/5/2016

Response: -3F is not needed per Thelma Flaherty

SM089-02 Rev. Date 12/1/16

> MC48956: Chain of Custody Page 3 of 4

\$,	C	GS	NO	F CIN	Wich.	CHA	IA 4	OF :	CUS	T) II	V				Da.		of ·	e e								
-	9	79	ACCI	UTEST	50 D'Angel	o Drive, 495 Tec	hnology (Center We	et Blda C	loo M	outh.						EX Track		i			Ipo		Page	e 1 o	f 1	
_						TEL. 5	08-481-6	200 FA	K: 508-48	31-775	iar 100	rougn,	MA 0	1752		- 1	Accutest										
6	Officer Ompany Name:	nt / Reporting Informat	ion			Droin		ww.sgs.cc	om							-	- WOLANDOL	Quote #				SG	S Accute	st Job	MC489	956	
- 1				Project Name	i.	Fiojec	t Infor	nation									R	equest	ed Ana	alysis (see T	EST C	ODF si	heat)			T Maria
1	SGS Accut	est			N	RG Montville	Lathron	Road N	dont illo	СТ									T	T	T			1000		T	Matrix Code
	eet Address 50 D'Angelo D	rive,		Street			7	rtodu, is	OTIVITIE	, 01										-	- 1						DW - Drinking Wa
Cit	495 Technolgy	Center West, BLDG One State					Billin	n Informat	i 115 m							-			- 1								GW - Ground Wa WW - Water
	Marlbourou		Zip	City		State	Compa	g Informat any Name	ion (ir dii	Terent	from	Repoi	t to)			4		- 1							- 1		SW - Surface Wa
	oject Contact	E-mail		Project #																-					- 1		SO - Soil SL- Sludge
- 1	jeremyv	jeremyv@accutest.com		I roject iii			Street	Address					***************************************			1	1					-				1	SED-Sediment OI - Oil
- [one #		Fax#	Client Purchas	e Order#		City														-						LIQ - Other Liquid
	508-481-620 npler(s) Name(s						J Silly				State	•		Zip		1	12										SOL - Other Solid
	AM	5)	Phone	Project Manage	er		Attentio	n:								1	(200.7										WP - Wipe FB-Field Blank
-							1										> >										EB-Equipment Blar RB- Rinse Blank
sg					-	Collection		I	T		Nun	nber of p	reserve	d Bottle	es	-	MG										TB-Trip Blank
Samp	test le # Field	ID / Point of Collection		MEOH/DI Vial #		1	Sampleo				NaOH+ZN	, 7	ш E	-	RE	1	FE.									1 1	
16		2-MW-402		MECHADI VIZI #	Date	Time	by	Matrix	# of bottle	5 모	NaOH	HZSO4	NONE DI Wat	MEOH	ENCOR	0	AS.									1	
1	_	2-MW-402			12/2/16	8:20:00 AM	AM	AQ	1	П	,	×	\top	\Box	+	_	X	+	+-	+	+	+-	-	+-	\perp		LAB USE ONLY
2F		2-MW-402-DUP			12/2/16	8:20:00 AM	AM	AQ	2	П	x >		\top	\Box	+	X	Х	+	+-	+	+	-	-	-	\perp		
2	-				12/2/16	8:20:00 AM	AM	AQ	1	†	1,	+	+	+	+		-	+	+-	-						. 1	ha A.
-	110012	-MW-402-DUP			12/2/16	8:20:00 AM	AM	AQ	1	+	×	++	+	\vdash	+		X	+-	_	_							10()
3F	EQUIP	MENT BLANK			12/2/16	9:00:00 AM	AM	AQ	1	H	+	++	+	\vdash	+		Х	_									
3	EQUIP	MENT BLANK			12/2/16	9:00:00 AM	AM	AQ		\vdash	×	11	4	Ш	\perp		Х								1	_	
4F	AOC12	-MW-401			12/2/16	10:10:00 AM	AM		1	H	×	H	\perp	\vdash	\perp		Х							1	+	+	
4	AOC12-	-MW-401			12/2/16	10:10:00 AM	AM	AQ	1	1	×	\sqcup	\perp				Х						1	1	+	+	
						10.10.00 AW	AIVI	AQ	2	,	(x	Н	\perp			Х	Х						1		++	+	
										1	\perp	Ш			\prod							1	+	+	\vdash	+	
																						1	+	-	\vdash	+	
													П	T	П					_	-	+	+-	-	-	+	
_	Turna	round Time (Business days)										Т	\Box	\top	$\dagger \dagger$			-		-	-	-	-	-	\vdash	\perp	
		(www.iicaa daya)		annual D. (Con.)	Accutest PM): / Date:				Data E	eliver	rable	Inform	ation														
	Std. 10 Bu			Anoved by (SGS A	Accutest PM): / Date:			ommercia							ategor			Ship to	ALNJ	**10	Dow T	ments /	Specia	Instruc	ions		
	5 Day RU		*******					ommerciai JLLT1 (L							ategor	y B		omp to	, MEING	10	Day 17	41					
	2 Day EM		-		No.			Reduced					Stat				- 1						rome.	20	1/		
	1 Day EM		-		-			mmercial							nat _ RCP		-		IN	TIAL	ASES	SME	NI	200	-		- 1
	X other I	Due 12/16/2016	_			Λ			ommercial			its Only		-	1101				LA	BEL V	/FRIE	ICATI	ION	Alex			1
Eme	rgency & Rush	T/A data available VIA Lablini				1 II			mmercial								- 1							4	Appropriate Contract		
Relino	quished by Samp	dor	Date Tin	- Ia	Sample Custon	ymust be doc	umentec	below e	Reduced ach time	samp	ples	chaño	mmar e nos	y + Par	ntial Ra	w data										1	
1	1 kacur	+ laly	12/2/10		eceived By:	D			R	linquis	shed B	y.	//	70001	7 7	ciuaing	courie		ery. Date Time					-7		1	
Relino	uished by Samp	ler:	Date Time:		ceived By:	500			2		/	-	<u> </u>	90	1/				23		0:04	Received 2	N. C.			/	
Reling	uished by:		Date Time:	3		-1/-			4	linquis	hed B	y:			/			To	ate Time:	-		Received	By:				
5				5	ceived By:	V			Cu	stody 5	Seal #			Ç		ct	р	reserved	where ap	plicable		4					
													-		Not	intact								On Ice	Co	oler Tem	P. Z. / Ey

MC48956: Chain of Custody Page 4 of 4

Job No:

MC48956

Internal Sample Tracking Chronicle

SGS Accutest New England

FDG: NRG Montville Lathrop Road, Montville, CT Project No: 631207126

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
MC48956-1 AOC12-MV	Collected: 02-DEC-16 W-402	08:20 By: AM	Receiv	ved: 02-DEC	-16 By:	: DG
	SM4500S2- F-11 EPA 200.7	05-DEC-16 16:25 14-DEC-16 21:39		14-DEC-16	DP	S AS,FE,MG,V
	2 Collected: 02-DEC-16 W-402-DUP	08:20 By: AM	Receiv	ved: 02-DEC	-16 By:	: DG
MC48956-2	2 EPA 200.7	14-DEC-16 21:42	ND	14-DEC-16	DP	AS,FE,MG,V
	3 Collected: 02-DEC-16 NT BLANK	09:00 By: AM	Receiv	ved: 02-DEC	-16 By:	: DG
MC48956-3	3 EPA 200.7	14-DEC-16 21:45	ND	14-DEC-16	DP	AS,FE,MG,V
MC48956-4 AOC12-MV	Collected: 02-DEC-16 W-401	10:10 By: AM	Receiv	ved: 02-DEC	-16 By:	: DG
	SM4500S2- F-11 EPA 200.7	05-DEC-16 16:25 14-DEC-16 21:48		14-DEC-16	DP	S AS,FE,MG,V
MC48956-1 AOC12-MV	FCollected: 02-DEC-16 W-402	08:20 By: AM	Receiv	ved: 02-DEC	-16 By:	: DG
MC48956-1	EPA 200.7	14-DEC-16 21:51	ND	14-DEC-16	DP	AS,FE,MG,V
	PiCollected: 02-DEC-16 W-402-DUP	08:20 By: AM	Receiv	ved: 02-DEC	-16 By:	: DG
MC48956-2	2EPA 200.7	14-DEC-16 21:54	ND	14-DEC-16	DP	AS,FE,MG,V
MC48956-4 AOC12-MV	FCollected: 02-DEC-16 W-401	10:10 By: AM	Receiv	ved: 02-DEC	-16 By:	: DG
MC48956-4	HEPA 200.7	14-DEC-16 21:58	ND	14-DEC-16	DP	AS,FE,MG,V

QC Evaluation: CT RCP Limits

Job Number: MC48956

Account: SGS Accutest New England

Project: FDG: NRG Montville Lathrop Road, Montville, CT

Collected: 12/02/16

QC Sample ID CAS# **Units Limits** Analyte Sample Result Result Type Type

No Exceptions found.

^{*} Sample used for QC is not from job MC48956

Section 8

Metals Analysis

QC Data Summaries

(SGS Accutest New Jersey)

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: MC48956 Account: ALNE - SGS Accutest New England Project: FDG: NRG Montville Lathrop Road, Montville, CT

QC Batch ID: MP97542 Matrix Type: AQUEOUS Methods: EPA 200.7 Units: ug/l

Prep Date:

12/14/16

Metal RL IDL MDL MB Final Maluminum 200 20 22 Mantimony 6.0 1.2 3.1 Marsenic 3.0 1.5 2.8 0.20 <3.0 33.0 3.5 3.
Antimony 6.0 1.2 3.1 Arsenic 3.0 1.5 2.8 0.20 <3.0 Arsenic 3.0 1.0 3.3 31 Arsenic 3.0 3.3 1.4 Arsenic 3.0 1.2 1.2 Arsenic 3.0 1.2 1.8 Arsenic 3.0 1.1 2.1 Ar
Arsenic 3.0 1.5 2.8 0.20 <3.0 Arsenic 3.0 1.5 2.8 0.20 <3.0 Arsenic 3.0 1.5 2.8 0.20 <3.0 Arsenic 3.0
Barium 200 .5 .54 Beryllium 1.0 .3 .31 Bismuth 20 2.3 2.8 Boron 100 1.9 2.4 Cadmium 3.0 .2 .43 Calcium 5000 8.2 14 Chromium 10 .6 1.1 Cobalt 50 .2 .41 Copper 10 .8 2.6 Cron 100 8.9 18 -1.9 <100 Cead 3.0 1 2.5 Cithium 20 2.9 3.5 Calgreium 5000 88 90 -9.2 <5000 Cead 3.0 1 2.5 Cithium 20 2.9 3.5 Calcium 5000 88 90 -9.2 <5000 Cead 3.0 1 2.5 Cithium 20 2.9 3.5 Calcium 5000 88 90 -9.2 <5000 Cead 3.0 1 2.5 Cithium 20 2.9 3.5 Calcium 5000 88 90 -9.2 <5000 Cead 3.0 1 2.5 Cithium 20 2.1 2.8 Colassium 10000 78 99 Celenium 10 2.6 3.6 Celenium 10 2.6 3.6 Celenium 10 2.6 3.6 Celenium 10 2.7 .97 Celenium 10 2.8 Celenium 10 2.8 Celenium 10 2.9 Celenium 10 2.0 2.5 Celenium 10 2.0 2.22 Celenium 10 2.0 2.0 2.5 Celenium 20 2.0 2.
Seryllium
Sismuth
Soron 100 1.9 2.4 3.0 2.4 3.0 3.0 .2 .43 3.0 .2 .43 3.0 .2 .44 3.0 .2 .44 3.0 .2 .44 3.0 .2 .44 .20 .2 .44 .20 .2 .44 .20 .2 .44 .20 .2 .44 .20 .2 .44 .20 .2 .44 .20 .2 .44 .20 .2 .44 .20 .2 .44 .25 .45 .48 .40 .44 .48 .40 .44 .48 .40 .44
Cadmium 3.0 .2 .43 Calcium 5000 8.2 14 Chromium 10 .6 1.1 Cobalt 50 .2 .41 Copper 10 .8 2.6 Cron 100 8.9 18 -1.9 <100 Cead 3.0 1 2.5 Cithium 20 2.9 3.5 Calgree 15 .1 .48 Calcium 5000 88 90 -9.2 <5000 Canganese 15 .1 .48 Calcium 50 2.1 2.8 Calcium 50 2.1 2.8 Calcium 50 2.6 3.6 Calcium 10 3.6 3.6 Calcium 10 3.6 3.6 Calcium 10 3.7 3.7 Calcium 10 4.7 Calcium 10 4.7 Calcium 10 5.7 Calciu
Calcium 5000 8.2 14 Chromium 10 .6 1.1 Cobalt 50 .2 .41 Copper 10 .8 2.6 Cron 100 8.9 18 -1.9 <100 Cead 3.0 1 2.5 Cithium 20 2.9 3.5 Cagnesium 5000 88 90 -9.2 <5000 Canganese 15 .1 .48 Colybdenum 20 .3 1.4 Colotassium 10000 78 99 Colotassium 10000 78 99 Colotassium 10000 78 99 Colotassium 10000 20 25 Colotassium 1000
Chromium 10 .6 1.1 Cobalt 50 .2 .41 Copper 10 .8 2.6 Cron 100 8.9 18 -1.9 <100 Cead 3.0 1 2.5 Cithium 20 2.9 3.5 Cagnesium 5000 88 90 -9.2 <5000 Canganese 15 .1 .48 Colybdenum 20 .3 1.4 Coickel 10 .4 .64 Colaboration 10 2.6 3.6 Colaboration 10 2.6 3.6 Colaboration 10 .7 .97 Codium 10000 20 25 Colaboration 10 .2 .22 Challium 2.0 1.2 1.8 Coin 10 .5 1.6 Coin 10 .7 1.4 Coungsten 50 1.1 2.1 Congaten 50 1.1 Congaten 50 1.1 Congaten 50 1.1 Congaten 50 1.1 Congaten 50 1
Cobalt 50 .2 .41 Copper 10 .8 2.6 Gron 100 8.9 18 -1.9 <100
Copper 10 .8 2.6 Gron 100 8.9 18 -1.9 <100 Gead 3.0 1 2.5 Githium 20 2.9 3.5 Magnesium 5000 88 90 -9.2 <5000 Manganese 15 .1 .48 Molybdenum 20 .3 1.4 Mickel 10 .4 .64 Palladium 50 2.1 2.8 Potassium 10000 78 99 Gelenium 10 2.6 3.6 Gilicon 200 2.6 15 Gilver 10 .7 .97 Godium 10000 20 25 Gulfur 50 4.8 6.9 Strontium 10 .2 .22 Challium 2.0 1.2 1.8 Cin 10 .5 1.6 Citanium 10 .7 1.4 Cungsten 50 1.1 2.1 Vanadium 50 .5 .72 -0.10 <50
Seed
Lead 3.0 1 2.5 Lithium 20 2.9 3.5 Magnesium 5000 88 90 -9.2 <5000
Agnesium 5000 88 90 -9.2 <5000 Anganese 15 .1 .48 Allolybdenum 20 .3 1.4 Nickel 10 .4 .64 Palladium 50 2.1 2.8 Potassium 10000 78 99 Selenium 10 2.6 3.6 Silicon 200 2.6 15 Silver 10 .7 .97 Sodium 10000 20 25 Sulfur 50 4.8 6.9 Strontium 10 .2 .22 Challium 2.0 1.2 1.8 Fin 10 .5 1.6 Citanium 10 .7 1.4 Cungsten 50 1.1 2.1 Vanadium 50 .5 .72 -0.10 <50
Adagnesium 5000 88 90 -9.2 <5000 Adagnesium 5000 88 90 -9.2 <5000 Adagnese 15 .1 .48 Adolybdenum 20 .3 1.4 Vickel 10 .4 .64 Palladium 50 2.1 2.8 Potassium 10000 78 99 Selenium 10 2.6 3.6 Silicon 200 2.6 15 Silver 10 .7 .97 Sodium 10000 20 25 Sulfur 50 4.8 6.9 Strontium 10 .2 .22 Challium 2.0 1.2 1.8 Tin 10 .5 1.6 Citanium 10 .7 1.4 Cungsten 50 1.1 2.1 Vanadium 50 .5 .72 -0.10 <50
Manganese 15 .1 .48 Molybdenum 20 .3 1.4 Mickel 10 .4 .64 Palladium 50 2.1 2.8 Potassium 10000 78 99 Selenium 10 2.6 3.6 Silicon 200 2.6 15 Silver 10 .7 .97 Sodium 10000 20 25 Sulfur 50 4.8 6.9 Strontium 10 .2 .22 Challium 2.0 1.2 1.8 Fin 10 .5 1.6 Fitanium 10 .7 1.4 Fungsten 50 1.1 2.1 Vanadium 50 .5 .72 -0.10 <50
Molybdenum 20 .3 1.4 Mickel 10 .4 .64 Palladium 50 2.1 2.8 Potassium 10000 78 99 Selenium 10 2.6 3.6 Silicon 200 2.6 15 Silver 10 .7 .97 Sodium 10000 20 25 Sulfur 50 4.8 6.9 Strontium 10 .2 .22 Challium 2.0 1.2 1.8 Fin 10 .5 1.6 Citanium 10 .7 1.4 Cungsten 50 1.1 2.1 Vanadium 50 .5 .72 -0.10 <50
Nickel 10 .4 .64 Palladium 50 2.1 2.8 Potassium 10000 78 99 Gelenium 10 2.6 3.6 Silicon 200 2.6 15 Siliver 10 .7 .97 Sodium 10000 20 25 Sulfur 50 4.8 6.9 Strontium 10 .2 .22 Challium 2.0 1.2 1.8 Fin 10 .5 1.6 Fitanium 10 .7 1.4 Tungsten 50 1.1 2.1 Vanadium 50 .5 .72 -0.10 <50
Palladium 50 2.1 2.8 Potassium 10000 78 99 Selenium 10 2.6 3.6 Silicon 200 2.6 15 Silver 10 .7 .97 Sodium 10000 20 25 Sulfur 50 4.8 6.9 Strontium 10 .2 .22 Challium 2.0 1.2 1.8 Fin 10 .5 1.6 Citanium 10 .7 1.4 Cungsten 50 1.1 2.1 Vanadium 50 .5 .72 -0.10 <50
Palladium 50 2.1 2.8 Potassium 10000 78 99 Selenium 10 2.6 3.6 Silicon 200 2.6 15 Silver 10 .7 .97 Sodium 10000 20 25 Sulfur 50 4.8 6.9 Strontium 10 .2 .22 Challium 2.0 1.2 1.8 Fin 10 .5 1.6 Citanium 10 .7 1.4 Cungsten 50 1.1 2.1 Vanadium 50 .5 .72 -0.10 <50
Selenium 10 2.6 3.6 Silicon 200 2.6 15 Silver 10 .7 .97 Sodium 10000 20 25 Sulfur 50 4.8 6.9 Strontium 10 .2 .22 Challium 2.0 1.2 1.8 Fin 10 .5 1.6 Citanium 10 .7 1.4 Cungsten 50 1.1 2.1 Vanadium 50 .5 .72 -0.10 <50
Silicon 200 2.6 15 Silver 10 .7 .97 Sodium 10000 20 25 Sulfur 50 4.8 6.9 Strontium 10 .2 .22 Challium 2.0 1.2 1.8 Cin 10 .5 1.6 Citanium 10 .7 1.4 Cungsten 50 1.1 2.1 Canadium 50 .5 .72 -0.10 <50
Silicon 200 2.6 15 Silver 10 .7 .97 Sodium 10000 20 25 Sulfur 50 4.8 6.9 Strontium 10 .2 .22 Challium 2.0 1.2 1.8 Fin 10 .5 1.6 Fitanium 10 .7 1.4 Fungsten 50 1.1 2.1 Fanadium 50 .5 .72 -0.10 <50
Silver 10 .7 .97 Sodium 10000 20 25 Sulfur 50 4.8 6.9 Strontium 10 .2 .22 Challium 2.0 1.2 1.8 Fin 10 .5 1.6 Fitanium 10 .7 1.4 Tungsten 50 1.1 2.1 Fanadium 50 .5 .72 -0.10 <50
Sodium 10000 20 25 Sulfur 50 4.8 6.9 Strontium 10 .2 .22 Challium 2.0 1.2 1.8 Fin 10 .5 1.6 Fitanium 10 .7 1.4 Fungsten 50 1.1 2.1 Fanadium 50 .5 .72 -0.10 <50
Sulfur 50 4.8 6.9 Strontium 10 .2 .22 Challium 2.0 1.2 1.8 Fin 10 .5 1.6 Fitanium 10 .7 1.4 Fungsten 50 1.1 2.1 Fanadium 50 .5 .72 -0.10 <50
Strontium 10 .2 .22 Challium 2.0 1.2 1.8 Fin 10 .5 1.6 Fitanium 10 .7 1.4 Fungsten 50 1.1 2.1 Fanadium 50 .5 .72 -0.10 <50
Thallium 2.0 1.2 1.8 Tin 10 .5 1.6 Titanium 10 .7 1.4 Tungsten 50 1.1 2.1 Vanadium 50 .5 .72 -0.10 <50
Tin 10 .5 1.6 Titanium 10 .7 1.4 Tungsten 50 1.1 2.1 Vanadium 50 .5 .72 -0.10 <50
Titanium 10 .7 1.4 Tungsten 50 1.1 2.1 Tanadium 50 .5 .72 -0.10 <50
Tungsten 50 1.1 2.1 Vanadium 50 .5 .72 -0.10 <50
Manadium 50 .5 .72 -0.10 <50

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: MC48956 Account: ALNE - SGS Accutest New England

Project: FDG: NRG Montville Lathrop Road, Montville, CT

QC Batch ID: MP97542 Methods: EPA 200.7 Matrix Type: AQUEOUS Units: ug/l

12/14/16 Prep Date:

Associated samples MP97542: MC48956-1, MC48956-2, MC48956-3, MC48956-4, MC48956-1F, MC48956-2F, MC48956-

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

ACCUTEST

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: MC48956 Account: ALNE - SGS Accutest New England Project: FDG: NRG Montville Lathrop Road, Montville, CT

QC Batch ID: MP97542 Methods: EPA 200.7 Matrix Type: AQUEOUS Units: ug/1

Prep Date:

12/14/16

riep Date.			12/14/10	
Metal	BSP Result	Spikelot MPSPK1	% Rec	QC Limits
Aluminum				
Antimony				
Arsenic	1920	2000	96.0	85-115
Barium				
Beryllium				
Bismuth				
Boron				
Cadmium				
Calcium				
Chromium				
Cobalt				
Copper	anr			
Iron	23700	25000	94.8	85-115
Lead	anr			
Lithium				
Magnesium	23500	25000	94.0	85-115
Manganese				
Molybdenum				
Nickel				
Palladium				
Potassium				
Selenium				
Silicon				
Silver				
Sodium				
Sulfur				
Strontium				
Thallium				
Tin				
Titanium				
Tungsten				
Vanadium	1880	2000	94.0	85-115
Zinc	anr			

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: MC48956

Account: ALNE - SGS Accutest New England

Project: FDG: NRG Montville Lathrop Road, Montville, CT

QC Batch ID: MP97542 Methods: EPA 200.7 Matrix Type: AQUEOUS Units: ug/1

Prep Date: 12/14/16

	BSP	Spikelo	QC	
Metal	Result	MPSPK1	% Rec	Limits

Zirconium

Associated samples MP97542: MC48956-1, MC48956-2, MC48956-3, MC48956-4, MC48956-1F, MC48956-2F, MC48956-4F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: MC48956 Account: ALNE - SGS Accutest New England Project: FDG: NRG Montville Lathrop Road, Montville, CT

QC Batch ID: MP97542 Methods: EPA 200.7 Matrix Type: AQUEOUS Units: ug/1

Prep Date: 12/14/16

Metal	JC33051- Original	1F SDL 1:5	%DIF	QC Limits
Aluminum				
Antimony				
Arsenic	2.70	0.00	100.0(a)	0-10
Barium				
Beryllium				
Bismuth				
Boron				
Cadmium				
Calcium				
Chromium				
Cobalt				
Copper	anr			
Iron	0.00	0.00	NC	0-10
Lead	anr			
Lithium				
Magnesium	24300	25600	5.6	0-10
Manganese				
Molybdenum				
Nickel				
Palladium				
Potassium				
Selenium				
Silicon				
Silver				
Sodium				
Sulfur				
Strontium				
Thallium				
Tin				
Titanium				
Tungsten				
Vanadium	0.00	0.00	NC	0-10
Zinc	anr			

SERIAL DILUTION RESULTS SUMMARY

Login Number: MC48956

Account: ALNE - SGS Accutest New England

Project: FDG: NRG Montville Lathrop Road, Montville, CT

QC Batch ID: MP97542 Methods: EPA 200.7 Matrix Type: AQUEOUS Units: ug/1

Prep Date: 12/14/16

Zirconium

Associated samples MP97542: MC48956-1, MC48956-2, MC48956-3, MC48956-4, MC48956-1F, MC48956-2F, MC48956-4F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(anr) Analyte not requested
(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</pre>

Section 9

General Chemistry

QC Data Summaries

(SGS Accutest New Jersey)

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: MC48956 Account: ALNE - SGS Accutest New England Project: FDG: NRG Montville Lathrop Road, Montville, CT

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Sulfide Sulfide	GN56002 GN56002	2.0	0.0	mg/l mg/l	9.8 4.9	9.6 5.0	98.0 102.0	80-120% 80-120%

Associated Samples: Batch GN56002: MC48956-1, MC48956-4 (*) Outside of QC limits

